If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x^2+4x=0
We add all the numbers together, and all the variables
10x^2+4x=0
a = 10; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*10}=\frac{-8}{20} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*10}=\frac{0}{20} =0 $
| -1.3571=(x-69)/2.8 | | 3^5x-1=3^6x | | 2x+10=22-4 | | 9+8b=10 | | 11x=6*9251 | | x(x+5,2)(7-x)=0 | | n(n-1)+n(n-1)=168 | | 12x^2+25=0 | | 9/2+5/2x=2x-4 | | -12=3/5x | | 2,4x+8=32 | | y-6/7y=22 | | a4=4 | | 4/7y–2=3/7y+3/14 | | 7x/2-5x/6=4/3 | | 4y-5=2y-3 | | 8c-15=21 | | 5(g+4)-6(g-7)=25 | | 75=10x+15 | | 5(3x+4)-3(x+1)=41 | | -1=1/v | | X/2=3(x-10) | | 4(5s+3)=-48 | | 4(5s+3)=-4 | | 25^x=125^x-7 | | 7(3m+6)=24 | | -108(x^2-3)/(x^2+9)^3=0 | | 7q^2+11=-4 | | (32/n)=-8 | | 1/6x/7=3/4x | | 36x/(x^2+9)^2=0 | | 1/6x/(71)=3/4x |